Cambios

Ir a la navegación Ir a la búsqueda
sin resumen de edición
Línea 1: Línea 1:  
==Introducción==
 
==Introducción==
   −
El intestino delgado se extiende desde el píloro del [[Estómago Monogástrico - Anatomía & Fisiología|estómago]] al intestino [[Ciego - Anatomía & Fisiología|ciego]]. El intestino delgado recibe el quimo del [[Estómago Monogástrico - Anatomía & Fisiología|estómago]]. Es el sitio principal de la degradación química y la absorción de quimo. Las grasas son exclusivamente desglosadas en esta parte del tubo digestivo. Los carbohidratos y las proteínas que no se degradan en el intestino delgado están disponibles para la fermentación microbiana en el [[Intestino Grueso - Anatomía & Fisiología|intestino grueso]]. El intestino delgado produce enzimas para la digestión de proteínas, carbohidratos y grasas y absorbe los productos de su digestión. Las enzimas son producidas por las glándulas de la pared intestinal y el  [[Páncreas - Anatomía & Fisiología|páncreas]]. La [[Vesícula Biliar - Anatomía & Fisiología|vesícula biliar]] produce bilis que emulsiona las grasas para la digestión. La absorción esta facilitada por las crestas en el intestino delgado y por la presencia de las vellosidades y microvellosidades.
+
El intestino delgado se extiende desde el píloro del [[Estómago Monogástrico - Anatomía & Fisiología|estómago]] al intestino [[Ciego - Anatomía & Fisiología|ciego]]. El intestino delgado recibe el quimo del [[Estómago Monogástrico - Anatomía & Fisiología|estómago]]. Es el sitio principal de la degradación química y la absorción de quimo. Las grasas son exclusivamente desglosadas en esta parte del tubo digestivo. Los carbohidratos y las proteínas que no se degradan en el intestino delgado están disponibles para la fermentación microbiana en el [[:Categoría:Intestino Grueso - Anatomía & Fisiología|intestino grueso]]. El intestino delgado produce enzimas para la digestión de proteínas, carbohidratos y grasas y absorbe los productos de su digestión. Las enzimas son producidas por las glándulas de la pared intestinal y el  [[Páncreas - Anatomía & Fisiología|páncreas]]. La [[Vesícula Biliar - Anatomía & Fisiología|vesícula biliar]] produce bilis que emulsiona las grasas para la digestión. La absorción esta facilitada por las crestas en el intestino delgado y por la presencia de las vellosidades y microvellosidades.
    
El intestino delgado se compone de tres partes. Cada parte una anatomía distinto, pero todos tienen la misma estructura y función básica:
 
El intestino delgado se compone de tres partes. Cada parte una anatomía distinto, pero todos tienen la misma estructura y función básica:
Línea 40: Línea 40:     
The main soluble carbohdrates found in food are starch, found mainly in plants, and glycogen, found mainly in animal meat. There are two types of starch, ''amylose'' which has α1-4 glycosidic links and, ''amylopectin'' which has α1-4 glycosidic links and α1-6 glycosidic links making it branched (branches every glucose 25 residues). ''Glycogen'' is synthesised in the [[Hígado - Anatomía & Fisiología|hígado]] and [[Muscles - Anatomía & Fisiología|muscle]] and is similar to amylopectin as it has both α1-4 glycosidic links and α1-6 glycosidic links. However, it is more highly branched with shorter branches (branches every 12-18 glucose residues).
 
The main soluble carbohdrates found in food are starch, found mainly in plants, and glycogen, found mainly in animal meat. There are two types of starch, ''amylose'' which has α1-4 glycosidic links and, ''amylopectin'' which has α1-4 glycosidic links and α1-6 glycosidic links making it branched (branches every glucose 25 residues). ''Glycogen'' is synthesised in the [[Hígado - Anatomía & Fisiología|hígado]] and [[Muscles - Anatomía & Fisiología|muscle]] and is similar to amylopectin as it has both α1-4 glycosidic links and α1-6 glycosidic links. However, it is more highly branched with shorter branches (branches every 12-18 glucose residues).
The '''first stage''' of carbohydrate digestion begins with α-amylase, which is an endoglycosidase. ''(This means it breaks bonds in the middle of the polymer to produce di-, tri- and oligo-saccharides).'' α-Amylase is present in [[Salivary Glands - Anatomía & Fisiología|saliva]]. Salivary α-amylase is inactivated when it enters the [[Estómago Monogástrico - Anatomía & Fisiología|stomach]] due to it's acidic pH.
+
The '''first stage''' of carbohydrate digestion begins with α-amylase, which is an endoglycosidase. ''(This means it breaks bonds in the middle of the polymer to produce di-, tri- and oligo-saccharides).'' α-Amylase is present in [[:Categoría:Glándulas Salivales - Anatomía & Fisiología|saliva]]. Salivary α-amylase is inactivated when it enters the [[Estómago Monogástrico - Anatomía & Fisiología|stomach]] due to it's acidic pH.
    
Carbohydrate digestion continues in the lumen of the [[Intestino Delgado - Resumen - Anatomy & Physiology|intestino delgado]] as pancreatic α-amylase enters the [[Duodeno - Anatomía & Fisiología|duodeno]] in the pancreatic duct. This is the site of the majority of carbohydrate digestion. The '''second stage''' is the digestion of di-, tri-, and oligo-saccharides to monosaccharides. This is done by di-, tri-, and oligo-saccharidases which have a glycocalyx to trap their substrate. They are bound to enterocytes. The main dissacharides that are broken down are; Maltose into two glucose molecules, sucrose into a glucose and fructose molecule and lactose into a glucose and galactose molecule. These monomers can then be absorbed.
 
Carbohydrate digestion continues in the lumen of the [[Intestino Delgado - Resumen - Anatomy & Physiology|intestino delgado]] as pancreatic α-amylase enters the [[Duodeno - Anatomía & Fisiología|duodeno]] in the pancreatic duct. This is the site of the majority of carbohydrate digestion. The '''second stage''' is the digestion of di-, tri-, and oligo-saccharides to monosaccharides. This is done by di-, tri-, and oligo-saccharidases which have a glycocalyx to trap their substrate. They are bound to enterocytes. The main dissacharides that are broken down are; Maltose into two glucose molecules, sucrose into a glucose and fructose molecule and lactose into a glucose and galactose molecule. These monomers can then be absorbed.
Línea 48: Línea 48:  
====Digestión y Absorción de Triacilgliceroles====
 
====Digestión y Absorción de Triacilgliceroles====
   −
Triacylglycerols (TAGs) are digested by lipases. TAG digestion begins in the [[Cavidad Oral - Resumen - Anatomía & Fisiología|cavidad oral]], where lingual lipase is secreted in the [[Salivary Glands - Anatomía & Fisiología|saliva]]. It removes a fatty acid from the 3 position on the glycerol molecule producing 1,2-diacylglycerol(1,2 DAG) and a free fatty acid. TAG digestion continues in the small intestine, with pancreatic lipase and bile from the [[Hígado - Anatomía & Fisiología|hígado]]. Pancreatic lipase is water soluble and the TAG and 1,2-DAG are lipid soluble. Bile creates an interface for the enzyme to digest the lipid molecules. Bile also emulsifies fats; it reduces the size of lipid droplets increasing the surface area available for digestion. Pancreatic lipase removes any further fatty acids from the 3 position and then from the 1 position to produce 2-monoacylglycerol (2-MAG) and a fatty acid. Pancreatic lipase is unable to remove the fatty acid from the 2 position, so an enzyme called '''isomerase''' transfers the fatty acid from the 2 postion to the 1 postion to produce 1-monoacylglycerol (1-MAG). Pancreatic lipase can then remove the fatty acid from the 1 position to produce a fatty acid and glycerol.
+
Triacylglycerols (TAGs) are digested by lipases. TAG digestion begins in the [[Cavidad Oral - Resumen - Anatomía & Fisiología|cavidad oral]], where lingual lipase is secreted in the [[:Categoría:Glándulas Salivales - Anatomía & Fisiología|saliva]]. It removes a fatty acid from the 3 position on the glycerol molecule producing 1,2-diacylglycerol(1,2 DAG) and a free fatty acid. TAG digestion continues in the small intestine, with pancreatic lipase and bile from the [[Hígado - Anatomía & Fisiología|hígado]]. Pancreatic lipase is water soluble and the TAG and 1,2-DAG are lipid soluble. Bile creates an interface for the enzyme to digest the lipid molecules. Bile also emulsifies fats; it reduces the size of lipid droplets increasing the surface area available for digestion. Pancreatic lipase removes any further fatty acids from the 3 position and then from the 1 position to produce 2-monoacylglycerol (2-MAG) and a fatty acid. Pancreatic lipase is unable to remove the fatty acid from the 2 position, so an enzyme called '''isomerase''' transfers the fatty acid from the 2 postion to the 1 postion to produce 1-monoacylglycerol (1-MAG). Pancreatic lipase can then remove the fatty acid from the 1 position to produce a fatty acid and glycerol.
    
''NB: Pancreatic lipase works quickly, whilst isomerase works slowly. Thus, 2-MAG often accumulates and is absorbed (70% of digested TAG are absorbed as 2-MAG). A small proportion is absorbed as 1-MAG (6%).''
 
''NB: Pancreatic lipase works quickly, whilst isomerase works slowly. Thus, 2-MAG often accumulates and is absorbed (70% of digested TAG are absorbed as 2-MAG). A small proportion is absorbed as 1-MAG (6%).''

Menú de navegación